Connexin-Mediated Signaling in Nonsensory Cells Is Crucial for the Development of Sensory Inner Hair Cells in the Mouse Cochlea

نویسندگان

  • Stuart L Johnson
  • Federico Ceriani
  • Oliver Houston
  • Roman Polishchuk
  • Elena Polishchuk
  • Giulia Crispino
  • Veronica Zorzi
  • Fabio Mammano
  • Walter Marcotti
چکیده

Mutations in the genes encoding for gap junction proteins connexin 26 (Cx26) and connexin 30 (Cx30) have been linked to syndromic and nonsyndromic hearing loss in mice and humans. The release of ATP from connexin hemichannels in cochlear nonsensory cells has been proposed to be the main trigger for action potential activity in immature sensory inner hair cells (IHCs), which is crucial for the refinement of the developing auditory circuitry. Using connexin knock-out mice, we show that IHCs fire spontaneous action potentials even in the absence of ATP-dependent intercellular Ca2+ signaling in the nonsensory cells. However, this signaling from nonsensory cells was able to increase the intrinsic IHC firing frequency. We also found that connexin expression is key to IHC functional maturation. In Cx26 conditional knock-out mice (Cx26Sox10-Cre), the maturation of IHCs, which normally occurs at approximately postnatal day 12, was partially prevented. Although Cx30 has been shown not to be required for hearing in young adult mice, IHCs from Cx30 knock-out mice exhibited a comprehensive brake in their development, such that their basolateral membrane currents and synaptic machinery retain a prehearing phenotype. We propose that IHC functional differentiation into mature sensory receptors is initiated in the prehearing cochlea provided that the expression of either connexin reaches a threshold level. As such, connexins regulate one of the most crucial functional refinements in the mammalian cochlea, the disruption of which contributes to the deafness phenotype observed in mice and DFNB1 patients. SIGNIFICANCE STATEMENT The correct development and function of the mammalian cochlea relies not only on the sensory hair cells, but also on the surrounding nonsensory cells. Although the nonsensory cells have been largely implicated in the general homeostasis in the mature cochlea, their involvement in the initial functional differentiation of the sensory inner hair cells is less clear. Using mutant mouse models for the most common form of congenital deafness in humans, which are knock-outs for the gap-junction channels connexin 26 and connexin 30 genes, we show that defects in nonsensory cells prevented the functional maturation of inner hair cells. In connexin knock-outs, inner hair cells remained stuck at a prehearing stage of development and, as such, are unable to process sound information.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Therapeutic potential of cell therapy in the repair of hair cells and spiral ganglion neurons: review article

The mammalian cochlea is a highly complex structure which contains several cells, including sensory receptor or hair cells. The main function of the cochlear hair cells is to convert the mechanical vibrations of the sound into electrical signals, then these signals travel to the brain along the auditory nerve. Auditory hair cells in some amphibians, reptiles, fish, and birds can regenerate or r...

متن کامل

Ectopic expression of activated notch or SOX2 reveals similar and unique roles in the development of the sensory cell progenitors in the mammalian inner ear.

Hearing impairment or vestibular dysfunction in humans often results from a permanent loss of critical cell types in the sensory regions of the inner ear, including hair cells, supporting cells, or cochleovestibular neurons. These important cell types arise from a common sensory or neurosensory progenitor, although little is known about how these progenitors are specified. Studies have shown th...

متن کامل

Notch signaling is required for the generation of hair cells and supporting cells in the mammalian inner ear.

Sensorineural deafness and balance dysfunction are common impairments in humans frequently caused by defects in the sensory epithelium of the inner ear, composed of hair cells and supporting cells. Lineage studies have shown that hair cells and supporting cells arise from a common progenitor, but how these progenitors are generated remains unknown. Although various molecules have been implicate...

متن کامل

The Notch ligands DLL1 and JAG2 act synergistically to regulate hair cell development in the mammalian inner ear.

The mammalian auditory sensory epithelium, the organ of Corti, contains sensory hair cells and nonsensory supporting cells arranged in a highly patterned mosaic. Notch-mediated lateral inhibition is the proposed mechanism for creating this sensory mosaic. Previous work has shown that mice lacking the Notch ligand JAG2 differentiate supernumerary hair cells in the cochlea, consistent with the la...

متن کامل

BMP signaling is necessary for patterning the sensory and nonsensory regions of the developing mammalian cochlea.

The mammalian inner ear detects sound with the organ of Corti, an intricately patterned region of the cochlea in which one row of inner hair cells and three rows of outer hair cells are surrounded by specialized supporting cells. The organ of Corti derives from a prosensory domain that runs the length of the cochlear duct and is bounded by two nonsensory domains, Kölliker's organ on the neural ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2017